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Abstract

Multi-instance learning is a type of supervised machine learning where the class labels

are attached to bags of instances. This is in contrast to single-instance learning where

each individual instance is given a class label. Propositionalisation is the process of

converting a multi-instance dataset into a single-instance dataset, allowing standard ma-

chine learning algorithms to train on the propositionalised dataset. In this context, the

standard machine learning algorithms are known as base learners. We propose a novel

multi-instance algorithm, AdaProp, which employs a propositionalisation approach that

is influenced by the base learner. Hence, AdaProp is an adaptive propositionalisation

algorithm and thus is able to produce propositionalised representations that are fitted

more closely to the specific base learner than standard propositionalisation approaches.

Multi-instance learning has been applied to datasets from several domains, including

chemical datasets and text classification datasets. We examine one particular application

of multi-instance learning, image classification, in detail and evaluate AdaProp on existing

image classification datasets.
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Chapter 1

Introduction

Multi-instance (MI) learning is machine learning over multi-instance data, where the

instances are grouped together into bags and the learning is performed over these bags

rather than the individual instances. Multi-instance learning was originally proposed by

Dietterich, Lathrop, and Lozano-Pérez (1997) in the context of drug-activity prediction.

An application of multi-instance learning is image classification, where, for example, an

image is represented as a bag of segments and the interaction between the segments

contributes to the class of the image. In this context, each segment is an instance and

thus each image is a bag of instances.

One approach to handling multi-instance data is propositionalisation, where each bag

of instances is converted into a single feature vector. This converted dataset can be

used with standard single-instance machine learning algorithms (i.e. base learners) such

as SVMs and neural networks. In this project, we explore adaptive propositionalisation,

where the base learner is used to make decisions when propositionalising the dataset. The

propositionalisation approach considered involves the partitioning of the instance space

into regions, where each region corresponds to one or more features in the proposition-

alised dataset. We propose a new multi-instance algorithm, AdaProp, which performs this

adaptive propositionalisation. AdaProp has been implemented in the WEKA framework

(Hall et al., 2009).

This report is structured as follows: Chapter 2 introduces concepts relevant to the rest of

the report and discusses relevant previous work. Chapter 3 describes the AdaProp algo-

rithm in detail. The results of the experiments conducted in this project are split across

three chapters. Chapter 4 compares the various choices for the parameters of AdaProp,

Chapter 5 examines the impact of some refinement techniques on the classification accu-

racy and Chapter 6 compares AdaProp to existing multi-instance algorithms.
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Chapter 2

Background

This chapter discusses relevant previous work in the field of multi-instance learning and

introduces several key concepts necessary for the rest of the report. Section 2.1 briefly

introduces supervised machine learning, while Section 2.2 discusses multi-instance learn-

ing and describes several of the multi-instance assumptions used by previous work in this

field. Section 2.3 outlines some of the applications of multi-instance learning and exam-

ines the image classification application in more detail. This section also specifies how the

image classification datasets used in this project were prepared. Section 2.4 summarises

some of the existing multi-instance algorithms, including those which perform proposi-

tionalisation of multi-instance data. Among these algorithms, we examine two which are

closely related to AdaProp: TLC (Section 2.4.1) and RELAGGS (Section 2.4.2).

2.1 Supervised machine learning

In supervised machine learning, the training dataset is a set of instances, where each

instance consists of a fixed number of attributes and a single class label. The learner

is then expected to infer the relationship between the attributes and the class label,

resulting in a model which expresses the class label as some function of the attribute

values. This model can then be used to predict the class label of any instance from the

same underlying domain, including instances which were not part of the original training

dataset.

In this project, we consider a generalisation of supervised machine learning, known as

multi-instance learning, where the training dataset consists of labelled bags of instances,

each of which consists of a set of instances along with a class label.
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2.2 Multi-instance learning

Multi-instance (abbreviated MI) learning was introduced by Dietterich et al. (1997) in

the context of drug activity prediction. The MI learning problem was defined as a two-

class supervised learning problem where the classification occurs over bags of instances

rather than individual instances. Dietterich et al. (1997) assumed that each instance has

a hidden class label and that a bag belongs to the positive class if and only if at least

one of the instances in the bag belongs to the positive class. This assumption is known

as the “standard MI assumption” and fits the original domain of drug activity prediction

well.

In this project we also consider datasets which may not satisfy the standard MI assump-

tion. Therefore, we require MI assumptions which are more general than the standard

assumption. Chen, Bi, and Wang (2006) proposed a generalised MI assumption in which

the label of each bag is determined by the distance of the bag’s instances to some hidden

target points in instance space. Weidmann, Frank, and Pfahringer (2003) introduced a

hierarchy of generalisations of the standard MI assumption: presence-based, threshold-

based and count-based assumptions.

All generalised assumptions in the Weidmann et al. (2003) hierarchy presume that, for

each dataset, there exist a set of hidden concepts, i.e. conditions predicated on the in-

stances. The assumptions also presume that the class label of each bag is determined by

the number of instances in the bag which satisfy each concept. Under the presence-based

MI assumption, a bag is positive if and only if, for each concept, there exists an instance

in the bag which satisfies the concept. Under threshold-based MI assumption, a bag is

positive if and only if, for each concept, the number of instances which satisfy the concept

is greater than or equal to some threshold. Finally, under count-based MI assumption,

the most general of the assumptions in the hierarchy, a bag is positive if and only if, for

each concept, the number of instances which satisfy the concept is greater than or equal

to some lower threshold and is less than or equal to some upper threshold.

The assumptions form a hierarchy of specialisations: the standard MI assumption can be

considered to be a specialisation of the presence-based assumption (where there is only

one concept), which in turn can be considered to be a special case of threshold-based

assumption (where the threshold is exactly 1), which also is a specialisation of the count-

based assumption (where the upper threshold is infinite). The algorithm developed in

this project, AdaProp, has been designed for datasets corresponding to the most general of

these MI assumptions, the count-based assumption. Therefore AdaProp is also expected

to be able to handle the datasets which satisfy the more specialised MI assumptions.
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2.3 Applications

In the original application of multi-instance learning, by Dietterich et al. (1997), each

bag represents a single molecule, and each instance of the bag corresponds to a single

conformation of the molecule. In this dataset, the “musk” dataset, the class label is

positive if and only if the molecule emits a musky odour, in any of its conformations.

Multi-instance learning has also been applied to other domains such as image and text

classification where the standard MI assumption is less appropriate. For example, Maron

and Lozano-Pérez (1998) applied multi-instance learning (more specifically, the Diverse

Density algorithm), to several domains, including stock market prediction. As image clas-

sification is the target application for this report, we now consider it in more detail.

2.3.1 Image classification

The problem of image classification fits the multi-instance learning setting especially

well. In a standard machine learning context, each image must be represented as a single

fixed-size feature vector. Since an image may contain multiple objects, a single feature

vector may not capture all of the relevant information in the image. Also, since an image

can contain pixels which do not correspond to any objects of interest (i.e. background

pixels), and some objects maybe partially occluded, a single feature vector can also

contain irrelevant information. In general, global representations (which describe the

entire image) are not well suited to image classification. Instead, local representations

(which describe an image as a set of smaller subregions) are better at capturing the

information in an image (Grauman & Leibe, 2011). As a MI learning problem, an image

can be represented as a bag of instances, where each instance is a region of the image.

There have been several proposed approaches for converting an image into a multi-

instance representation. For example, Maron and Ratan (1998) convert images of natural

scenes into a multi-instance dataset by simply partitioning each image into small (2×2

pixel) fixed-size regions. Each such region is converted into an instance by extracting

color-based features from the region. Similarly, Yang and Lozano-Perez (2000) convert

each image by dividing the image into multiple large overlapping regions of various sizes,

where the smallest regions contained a quarter of the pixels of the original image. In

contrast, Zhang, Goldman, Yu, and Fritts (2002) use K-means segmentation to obtain

the subregions of each image. Another proposed approach is the one used by the SIFT

algorithm (Lowe, 2004), which identifies points of interest (i.e. points where the gradient

changes rapidly) and extracts small regions surrounding these keypoints.
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In this project, we consider datasets prepared by two different multi-instance image repre-

sentation approaches. The first approach, performed using the Blobworld system (Carson,

Thomas, Belongie, Hellerstein, & Malik, 1999), segments each image into blobs (regions)

by considering the colour, texture and position of each pixel, while each blob is described,

as a feature vector, using colour and texture information only. A key detail of this ap-

proach is that each blob partially is described by a binned colour histogram in L∗a∗b∗

space, which is a colour space that closely matches the human vision system. In our

experiments, we use the datasets tiger, fox and elephant which were prepared using

this approach by Andrews, Tsochantaridis, and Hofmann (2002). The second approach,

used by Mayo and Frank (2011), divides each image into a fixed number of subregions

and extracts features from each subregion. The features extracted are the histograms of

LBP (local binary patterns) and histograms in Ohta colour space, capturing texture and

colour information respectively. The key detail with this approach is that both the Ohta

colour transformation and LBP feature extraction are computationally efficient, allowing

large datasets (e.g. with 800 images) to be prepared quickly. The datasets people, bikes

and cars, used in our experiments, were prepared using this approach.

2.4 Multi-instance algorithms

A number of algorithms for learning on MI data have been proposed. The original

algorithm proposed by Dietterich et al. (1997) used an axis parallel rectangle to identify

the region of the instance space where the positive instances lay. The algorithm was

designed to find the region which contained at least one instance from each positive bag

but no instances from the negative class. Maron and Lozano-Pérez (1998) proposed the

Diverse Density algorithm, where the aim was to find target points in instance space

which are close to at least one instance from each positive bag and far away from all

instances in negative bags. Both algorithms were designed specifically for MI data.

Another approach to handling multi-instance data is to adapt existing standard machine

learning algorithms. MISVM (Andrews et al., 2002) is an example of this approach,

where the authors extend the concept of a margin. In standard SVMs, the margin is

a function dependent on the individual instances, while in MISVM, the margin is a

function of all instances in the bag. This bag-margin is then directly minimised to obtain

the MISVM classifier. In this project we consider a more general approach, that of

propositionalisation, where the multi-instance dataset is converted into a single-instance

representation, allowing any existing standard machine learning algorithm to train on the

dataset.
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There are some existing approaches to propositionalisation in the literature. Chen et

al. (2006) introduced MILES, where each bag is propositionalised by considering the

shortest distance between any instance in the bag and some target points in the instance

space. TLC, an algorithm proposed by Weidmann et al. (2003), partitions the instance

space and propositionalises each bag by counting the number of instances which fall into

each partition. In RELAGGS (Krogel & Wrobel, 2003), each bag is propositionalised by

computing summary statistics across all instances in each bag. Both TLC and RELAGGs

are closely related to our algorithm, AdaProp, thus we examine them in more detail.

2.4.1 TLC

For multi-instance datasets subject to the generalised MI assumptions (for example, the

count-based assumption), Weidmann et al. (2003) proposed a two level learning approach,

aiming to separate the learning of the (hidden) instance labels from the learning of the

bag labels. In the first level, a C4.5 decision tree (J48 in WEKA) was built to partition

the instance space. This was done by assuming that each instance simply inherited the

class label of its parent bag, i.e. by ignoring any bag-level structure. In the second

level, the occupancy counts of instances of each bag in each region was used to build a

propositionalised dataset, to which a standard machine learner was applied. The aim of

the first level is to determine the structure of the overall instance space, while the aim of

the second level is to infer the relationship between the instances and the class label of the

bag. AdaProp uses a similar process as Weidmann et al. (2003) in the second level, but

differs from TLC as an adaptive approach is used to partition the instance space.

2.4.2 RELAGGS

RELAGGS was introduced by Krogel and Wrobel (2003) for general relational datasets,

which was then specialised for multi-instance datasets as a propositionalisation algorithm

in the WEKA software. RELAGGS is a simple algorithm, which ignores any structure

between the instances of each bag. Instead, all instances of each bag are grouped to-

gether and the summary statistics (min, max, mean, standard deviation and sum) of

each bag for each attribute are computed, forming the propositionalised dataset. AdaProp

with summary-based propositionalisation can be considered to be a generalisation of RE-

LAGGS, as summary-based AdaProp also computes summary statistics over instances,

albeit after dividing up the instances of each bag by a tree of partitions.
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Chapter 3

AdaProp

The approach investigated in this project, named AdaProp, is an adaptive proposition-

alisation algorithm for multi-instance datasets. AdaProp divides the instance space into

regions and then propositionalises each bag by computing summary statistics for the sub-

set of instances of the bag which lie in each region. AdaProp determines the regions by

repeatedly splitting the instance space into two partitions. Therefore, AdaProp consists

of three major components: a base learner (any single-instance learning algorithm), a

process for partitioning the instance space, and a process for constructing the proposi-

tionalised dataset using the regions.

This chapter is organized as follows: first we introduce some notation and definitions in

Section 3.1, followed by the approach used to build the tree of partitions in Section 3.2

and the methods of propositionalisation in Section 3.3. Section 3.4 briefly describes the

base learners considered in this project, while Section 3.5 discusses some of the techniques

used to improve the cross-validated classification accuracy of AdaProp.

3.1 Definitions

A multi-instance dataset D is a set of labelled bags, where each labelled bag is a set of

instances with a class label. Each instance in each bag has a set of k attributes and thus

can be considered a vector in Rk (assuming all attributes are numeric). Therefore, the set

of all instances, I, can be defined as a set of k-dimensional vectors. Thus, I ⊆ Rk.

Each labelled bag in the dataset D is composed of a set of instances from I, along with

a class label. Let C be the set of all possible class labels. Then we can define D, the

multi-instance dataset, as D ⊆ (P(I)×C), where × denotes the Cartesian product.
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The propositionalisation process can be viewed as a function mapping each labelled bag

(Bi, ci) ∈ D to a single labelled instance pi ∈ (Rj × C). Note that pi has j (non-class)

attributes, which need not be equal to k, the number of attributes of each instance in

the original dataset. Also note that the propositionalisation process does not modify the

class label.

3.2 Partitioning the instance space

For the purposes of finding an appropriate propositionalisation, we first compute M, an

intermediate labelled dataset consisting of all instances in D. M is built up by collecting

together all instances from all the bags in the dataset and attaching the class label of

each bag to each instance in the bag1. Formally, M ⊆ (I × C), where each instance of

M appears in D:

∀ (a, ci) ∈M : ∃ (B, cb) ∈ D : a ∈ B ∧ ci = cb

and each instance of D appears in M:

∀ (B, cb) ∈ D : ∀ a ∈ B : (a, cb) ∈M

For example, consider the small two-class dataset in Table 3.1, consisting of two bags

(|D| = 2) containing five instances in total, each with two attributes (k = 2). Fig-

ure 3.1 shows the intermediate labelled datasetM for this example dataset with positive

instances rendered as squares and negative instances rendered as triangles.

After computingM, our algorithm aims to partition the instance space ofM into regions.

These regions are found by an iterative greedy algorithm (Algorithm 1), which builds

up a tree of partitioning hyperplanes. For the purposes of this algorithm, a partitioning

hyperplane is a hyperplane in the instance space, of the form w ·a = c, where c and w are

parameters of the hyperplane and a is the vector of attribute values. This hyperplane

represents a natural partitioning of the instance space into two regions: the instances

which lie above the hyperplane, i.e. i ∈ I where w · i > c; and the instances which lie at

or below the hyperplane, i.e. i ∈ I where w · i ≤ c.

At each iteration, the algorithm generates a list of candidate partitioning hyperplanes

and selects the best hyperplane to add to the tree. To reduce the search space, AdaProp,

1The instance class labels are required by our algorithm when applied with discretization-based heuris-
tic discussed in Section 3.2.
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Bag Class Instance Attribute a1 Attribute a2

b1 positive
i1 0.3 0.7
i2 0.5 0.1

b2 negative
i3 0.2 0.9
i4 0.8 0.6
i5 0.5 0.7

Table 3.1: Example dataset

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a1

a 2

Figure 3.1: Visualisation of M for the example dataset

Algorithm 1 Building a tree of partitioning hyperplanes

Initialise T , the tree of partitioning hyperplanes as a tree with a single node
while T is not satisfactory do (Section 3.2.1)

ni ← Select a leaf node in the tree T (Section 3.2.2)
Mi ← {(a, c) ∈M | a lies in the region corresponding to ni}
H ← Generate candidate partitioning hyperplanes for Mi (Section 3.2.3)
Hi ← Select the optimal hyperplane in H (Section 3.2.4)
Make ni an internal node in T , corresponding to the hyperplane Hi

end while
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Figure 3.2: Partitioning of M for the example dataset

•
n0

•n1 • n2

•n3 • n4 •n5 • n6

a1 ≤ 0.4 a1 > 0.4

a2 ≤ 0.8 a2 > 0.8 a2 ≤ 0.5 a2 > 0.5

Figure 3.3: A tree corresponding to the partitioning of M in Figure 3.2
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as evaluated in this project, only considers hyperplanes which correspond to testing just

one attribute, i.e. hyperplanes which intersect exactly one axis. Therefore, each partition

in this algorithm corresponds to a hyperplane of the form ai = c.

Figure 3.2 shows a possible partitioning of the instance space for the example dataset

from Table 3.1. Figure 3.3 shows the corresponding tree of partitioning hyperplanes built

by the algorithm. We now consider the steps performed by the algorithm in detail.

3.2.1 Stopping conditions

The AdaProp algorithm continues to iterate while none of the following stopping condi-

tions are met:

The tree becomes too big:

Depth(T ) ≥ maxDepth, where maxDepth is a user specified parameter.

Each region corresponding to a leaf node contains too few instances:

∀ ni ∈ LeafNodes(T ) : Occupancy(ni) < minOcc, where Occupancy(ni) is the

number of instances ofM which lie in ni and minOcc is a user specified parameter.

The tree is sufficiently accurate for the training set:

Error(BaseLearner,DT ) < minErr, where DT is the dataset D propositionalised

using T (see Section 3.3), Error is the misclassification error on the training set

when the BaseLearner is trained on DT , and minErr is a user specified parameter.

3.2.2 Selecting a leaf node to expand

At each iteration of the algorithm, a leaf node of T is selected to be expanded into an

internal node of the tree. The leaf nodes which are eligible to be expanded are those

which, when expanded, will not violate the maxDepth condition. Let N be the subset

of the leaf nodes of T which are eligible for expansion:

N ← {ni ∈ LeafNodes(T )
∣∣ Depth(ni) < maxDepth− 1}

We assume that the nodes in T are indexed in breadth first order, as shown in Figure 3.3.

Then, among any subset of nodes with equal depth, the leftmost node is the node which

has the least index. This concept of leftmost-node is used to break ties in the leaf node

selection strategies. AdaProp supports three leaf node selection strategies:
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Depth first search:

The node selected is the leaf node which is leftmost node among the leaf nodes

which have the greatest depth in N .

greatestDepth← max{depth(nj)
∣∣ nj ∈ N}

ni ← leftmost{nj ∈ N
∣∣ depth(nj) = greatestDepth}

Breadth first search:

The node selected is the leaf node which is leftmost node among the leaf nodes

which have the least depth in N .

leastDepth← min{depth(nj)
∣∣ nj ∈ N}

ni ← leftmost{nj ∈ N
∣∣ depth(nj) = leastDepth}

Best first search:

Given a heuristic function h(n) such that h(nj) < h(ni) iff nj is a better node to

expand than ni, the node selected is the leaf node which is the leftmost among the

leaf nodes which have the least value for h(n) in N .

leastH ← min{h(nj)
∣∣ nj ∈ N}

ni ← leftmost{nj ∈ N
∣∣ h(nj) = leastH}

AdaProp supports only one heuristic function, the Error(n), which is the training

set error on the dataset D propositionalised using T along with the best partition-

ing hyperplane at n. Computation of Error(n) involves evaluating all candidate

partitions at a given node, thus Error(n) is computationally expensive.

3.2.3 Generating candidate partitioning hyperplanes

Given the set of labelled instances Mi ⊆ M, we wish to generate a set of candidate

partitioning hyperplanes for Mi in the instance space. As mentioned above, AdaProp

only considers hyperplanes which intersect exactly one axis (thus are parallel to all other

axes). We consider four methods for generating candidate hyperplanes. The first three

all attempt to find balanced partitioning hyperplanes, i.e. those which lie somewhat near

the center of the instances in Mi. Therefore, the first three methods follow the same

template:

for j = 1→ k do

Vj ← {aj
∣∣ ∃c ∈ C : (a, c) ∈Mi}

m← findPt(Vj)

Output candidate hyperplane: aj = m

end for
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The three different instantiations of the findPt() method are as follows:

Range based midpoint:

For each attribute aj, the range (i.e. minimum and maximum) of values of aj for

the instances inMi is computed, and a candidate hyperplane corresponding to the

midpoint between the minimum and maximum values is generated.

midpt(Vj)← min(Vj) + max(Vj)

2

Mean:

For each attribute aj, the candidate hyperplane generated corresponds to the mean

value of aj for all instances in Mi.

midpt(Vj)← mean(Vj)

Median:

For each attribute aj, the candidate hyperplane generated corresponds to the me-

dian value of aj for all instances in Mi.

midpt(Vj)← median(Vj)

The fourth method is different to the above three methods as it (potentially) gener-

ates multiple candidate partitions per attribute. For each attribute aj, the values of aj

for all instances in Mi are sorted, and the values at which the class changes (i.e. the

class boundaries) are used to generate the partitioning hyperplanes. This is similar to

the discretization process of OneR (Holte, 1993), thus is called the discretization-based

method.

Discretization-based:

for j = 1→ k do

Wj ← {(aj, c)
∣∣ (a, c) ∈Mi}

Sort Wj

for all values (wj, cj) ∈ Wj where cj−1 6= cj do

m← wj−1+wj

2

Output candidate hyperplane: aj = m

end for

end for

See Figure 3.4 for a visualisation of all the candidate partitioning hyperplanes generated

by each method for the example dataset in Table 3.1.
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Figure 3.4: Candidate partitions generated for the M corresponding to the example
dataset

Algorithm 2 Selecting the optimal partitioning hyperplane

function EvaluateHyperplane(T ,ni,Hj)
Tj ← T with the hyperplane Hj added at the node ni

DTj
← D propositionalised using Tj

return Erroreval metric(BaseLearner,DTj
)

end function

function FindOptimalHyperplane(T ,ni,H)
minErr = min{EvaluatePartition(T ,ni,Hj) | Hj ∈ H}
return any{Hj ∈ H | EvaluatePartition(T ,ni,Hj) = minErr}

end function
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3.2.4 Selecting the optimal partitioning hyperplane

Given a set of candidate partitioning hyperplanes H for the labelled set of instancesMi,

AdaProp aims to find the optimal hyperplane Hi in H, which is the hyperplane with the

least error (as measured using some hyperplane evaluation metric) on D when using the

base learner.

The overall process is specified in Algorithm 2. To summarize: for each candidate hyper-

plane Hj, a new tree Tj is obtained by adding Hj to T . Then Tj is used to propositionalise

D and the base learner is trained on the propositionalised dataset, resulting in a clas-

sifier. This classifier is then evaluated on the propositionalised training set, using the

hyperplane evaluation metric. The candidate hyperplane which results in the least error

during this evaluation process is selected as the optimal hyperplane.

In this project, we consider three hyperplane evaluation metrics:

Classification error:

The classification error is the misclassification rate, i.e. the number of incorrectly

classified bags divided by the total number of bags in D. Formally:

CE =
|{ (b, c) ∈ D | f(b) 6= c }|

| D |

where f(b) is the class label predicted by the base learner for the bag b.

Root mean squared error:

The root mean squared error takes into account the probability estimates emitted by

the classifier. As suggested by its name, the root mean squared error is computed

by taking the square root of the average squared error over all bags, where the

error for each bag is defined as the difference between the actual probability and

the probability estimate emitted by the classifier. Note that the actual probability

of a bag B taking on a specific class value c is defined as 1 if B has the class label

c attached, and 0 otherwise. Formally:

RMSE =

√
1

|D| · |C|
∑

(b,cb)∈D

∑
c∈C

(
g(b, c)− I(c, cb)

)2

I(c, cb) =

{
1 : c = cb

0 : c 6= cb

where g(b, c) is the probability, as estimated by the base learner, that b has class c.
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Information gain:

The information gain, in this context, is defined as the difference in entropy between

the probability estimates emitted by the classifier and the null model. The hyper-

plane evaluation metric based on information gain is implemented as the negation

of the information gain value, in order to obtain an error function.

IG =
∑

(b,c)∈D

(
hg(b, c)− hz(b, c)

)

hg(b, c) = −g(b, c) ln g(b, c)

hz(b, c) = −z(b, c) ln z(b, c)

where g(b, c) is the probability that bag b has class c, as estimated by the base

learner, and z(b, c) is the probability that bag b has class c as estimated by the null

model (i.e. ZeroR in WEKA). Note that both hg and hz are entropy functions.

3.3 Propositionalisation

The tree of partitioning hyperplanes T defines a set of regions in the instance space

which cover the instance space completely: each node in the tree corresponds to a region,

described by the tests used along the path to that node. Each such region will corre-

spond to one or more attributes in the propositionalised dataset. AdaProp implements

two different approaches to propositionalisation of each bag (Algorithm 3): count-based

propositionalisation and summary-based propositionalisation.

3.3.1 Count-based propositionalisation

In count-based propositionalisation, each bag is converted into a feature vector by count-

ing the number of instances of the bag which fall into each region. Therefore, each region

corresponds to a single attribute in the propositionalised vector. Formally, the Prop

function in Algorithm 3 for count-based propositionalisation is given by:

Prop : P(I)→ R, where Prop(X) = |X|

Table 3.2 shows the count-based propositionalised form of the example dataset given in

Table 3.1, partitioned by the tree shown in Figure 3.3.
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Algorithm 3 Propositionalisation (Given a function Prop : P(I)→ Rm,m ≥ 1)

Initialise the propositionalised dataset P as an empty dataset
for all bags (Bi, c) ∈ D do

Initialise the propositionalised vector p as an empty list
for all nodes nj in the tree T do

X(j) ← {i ∈ Bi | i lies in the region corresponding to nj}
p← p || Prop(X(j)) . || denotes concatenation

end for
Add the labelled vector (p, c) to the dataset P

end for

Bag n0 n1 n2 n3 n4 n5 n6 Class

b1 2 1 1 1 0 1 0 positive
b2 3 1 2 0 1 0 2 negative

Table 3.2: Count-based propositionalised form of the example dataset

Bag
n0 a1 n0 a2 n1 a1

min max sum avg min max sum avg min max sum avg ...
b1 0.3 0.5 0.8 0.4 0.1 0.7 0.8 0.40 0.3 0.3 0.3 0.3
b2 0.2 0.8 1.5 0.5 0.6 0.9 2.2 0.73̇ 0.2 0.2 0.2 0.2

n1 a2 n2 a1 n2 a2 Class

... min max sum avg min max sum avg min max sum avg

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.70 0.1 0.1 0.1 0.10 positive
0.9 0.9 0.9 0.9 0.5 0.8 1.3 0.65 0.6 0.7 1.3 0.65 negative

Table 3.3: Summary-based propositionalised form of the example dataset (showing only
the nodes n0,n1, and n2).
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3.3.2 Summary-based propositionalisation

In summary-based propositionalisation, the instances which fall into each region are ag-

gregated using summary statistics, such as minimum, maximum, sum, and average (i.e.

mean). For each region, the summary statistics are computed for all attributes, re-

gardless of which attribute was used in the chosen partitioning hyperplane. Therefore,

summary-based propositionalisation is more computationally expensive than count-based

propositionalisation, but is able to preserve significantly more information from each bag

in the propositionalisation.

Table 3.3 shows the propositionalised form of the example dataset given in Table 3.1

when using summary-based propositionalisation.

Formally, the Prop function in Algorithm 3 for summary-based propositionalisation is

given by:

Prop : P(I)→ R4k

Prop(X) = ( min(X1), max(X1), sum(X1), avg(X1),

min(X2), max(X2), sum(X2), avg(X2),

. . . ,

min(Xk), max(Xk), sum(Xk), avg(Xk))

where k is the number of attributes and Xj = {ij | i ∈ X}, i.e. the values of the jth

attribute for all instances in X.

3.4 The base learner

Any standard machine learning algorithm can be used as the base learner to guide the

hyperplane selection process. The choice of base learner is left up to the user. This

report considers two common base learners for the experiments: RandomForest and

LogitBoost.

A random forest (Breiman, 2001) constructs an ensemble of randomized decision trees,

where each node of each tree is built by selecting from a random subset of the attributes.

In this project, random forests with 100 trees were used, using the RandomForest imple-

mentation in the WEKA software.
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LogitBoost, introduced by Friedman, Hastie, and Tibshirani (2000), is an adaptive

boosting algorithm which minimises a logistic loss function. In this project, LogitBoost

with 50 iterations was used as a compromise between runtime and accuracy, using de-

cision stumps (1-level decision trees, implemented as DecisionStump in WEKA) as the

base learner.

3.5 Refinements

Initial experiments (discussed in Chapter 4) indicated that AdaProp significantly over-

fits some datasets. In order to reduce this overfitting, and thus improve the accuracy

of AdaProp, two standard techniques for reducing overfitting were implemented: cross

validated parameter selection and randomized bagging.

3.5.1 Parameter selection

Initial results showed that the size of the trees of partitioning hyperplanes built up by

AdaProp has substantial impact on the cross-validated classification accuracy. In fact,

the experiments showed that increasing the tree size increased the accuracy initially up

to some maximum, after which it declined. This suggests that there is some optimal size

for the tree of partitioning hyperplanes. From the experiments, it was also clear that this

optimal size is dependent on the dataset, i.e. different datasets have different optimal tree

sizes.

Thus, in order to find an appropriate tree size for any given dataset, AdaProp can perform

5-fold cross-validated selection over all tree sizes (Algorithm 4). This process maintains a

set of 5 trees, each built on a different 80% of the training dataset, and evaluated on the

remaining 20%. When partitioning the dataset, stratification is used to ensure that each

partition has approximately the same distribution of class labels as the entire dataset.

The size of each tree is then iteratively increased until the total error on the test datasets

ceases to decrease.

This process requires more time than running the AdaProp process with a fixed tree

size, but provides an increase in accuracy. However, compared to the usual method of

parameter optimisation, where the entire training process is repeated for each possible

value of the parameter and for each fold of the cross-validation, this method is significantly

more efficient.
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Algorithm 4 Cross-validated tree-size selection

Partition, with stratification, the training set into 5 folds: {X1,X2, . . . ,X5}.
for j = 1→ 5 do

Build a tree Tj of size 1, using all folds except Xj as the training set.
e0j ← 1 . etj is the error of the tree Tj when of size t
e1j ← the misclassification error rate of Tj when evaluated on Xj.

end for
t← 1 . t is the current tree size.
while et1 + et2 + . . . + et5 ≤ et−11 + et−12 + . . . + et−15 do

t← t + 1
for j = 1→ 5 do

Expand Tj by one node, using all folds except Xj as the training set.
etj ← the misclassification error rate of Tj when evaluated on Xj.

end for
end while
Output t− 1 as the optimal tree size.

3.5.2 Randomized bagging

Another refinement implemented to combat overfitting is randomized bagging. Bagging

was performed using WEKA’s standard bagging implementation, where the training set

is resampled (by sampling bags with replacement) to generate n independent datasets,

where n is the number of iterations. The resampling is performed such that each new

dataset is the same size as, i.e. contains the same number of bags as, the original dataset.

Then, an ensemble of n AdaProp trees is built (i.e. one tree per dataset), and the average of

each tree’s class probability estimate is used as the ensemble’s probability estimate.

When bagging is performed on standard AdaProp trees, the runtime grows linearly with

the number of iterations (i.e. 50 iterations of bagging will take 50 times longer to complete

than training a single AdaProp tree). In order to reduce the runtime and also to further

reduce overfitting, randomization in attribute selection was implemented, where at each

node in each tree, only a randomly chosen subset of attributes was considered when

selecting the optimal partitioning hyperplane. The subset of attributes was chosen to be

of size log2(K) + 1 (as in WEKA’s RandomForest), where K is the number of attributes.

Therefore the randomization reduced the runtime by a factor of K
log2(K)+1

.
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Chapter 4

Results: AdaProp parameters

We conducted a number of experiments over a set of multi-instance datasets, with the aim

of identifying the impact of the various parameters of AdaProp on classification accuracy.

All experiments were conducted using the WEKA Experimenter (version 3.7) and mea-

sured the 10× 10-fold cross-validated classification accuracy. The experiments consisted

of running AdaProp over multiple configurations, varying the following parameters:

Propositionalisation: count-based or summary-based (Section 3.3)

Candidate Generation: mean, median, range or discretized (Section 3.2.3)

Hyperplane Evaluation: CE, RMSE or IG (Section 3.2.4)

Leaf Node Selection: breadth first search or best first search (Section 3.2.2)

Base Learner: RandomForest (with 100 trees) or LogitBoost (with 50 iterations)

4.1 Datasets

The experiments in this project were ran over twelve multi-instance datasets, consisting

of six chemical datasets and six image classification datasets:

• atoms, bonds and chains are mutagenesis datasets, where the aim is to predict the

mutagenicity of molecules. The datasets were prepared by Reutemann, Pfahringer,

and Frank (2005) from the original mutagenicity problem (Srinivasan, Muggleton,

King, & Sternberg, 1994). In all datasets, each bag corresponds to a molecule.

Therefore, the datasets differ only in the representation of each molecule, where each

instance corresponds to an atom, a bond or a chain (a pair of bonds) respectively.
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• musk1 and musk2 are datasets which arise from the original multi-instance appli-

cation (Dietterich et al., 1997), where the goal is to predict whether the molecules

emit an odour. Each molecule is described as a bag of the possible conformations

(i.e. shapes) of the molecule. The musk1 dataset is simply a subset of the musk2

dataset.

• In trx, the aim is to identify proteins which belong to the Thioredoxin-fold family

(Wang et al., 2004). In this dataset, approximately 87% of the bags belong to

the positive class, thus the majority class classifier (i.e. ZeroR in WEKA) obtains

87% accuracy. In our experiments, AdaProp often struggles to improve on the

performance of ZeroR on this dataset.

• tiger, fox and elephant are image classification datasets prepared by Andrews

et al. (2002) from the COREL dataset, where the aim is to detect whether the

objects of interest (tigers, foxes and elephants, respectively) appear in each image.

Each bag corresponds to an image and the instances of each bag are produced by

segmentation. Each segment is described by colour histograms and texture features.

• people, bikes and cars are image classification datasets prepared by Mayo (2007),

from the images in GRAZ02 (Opelt, Pinz, Fussenegger, & Auer, 2006), where the

objects of interest are people, bikes and cars respectively. In these datasets, each

image is described by subdividing the image into regions and extracting local binary

patterns and colour histograms from each subdivision.

4.2 Propositionalisation

The algorithm developed in this project, AdaProp, defines a partitioning of the instance

space into multiple overlapping regions and uses this partitioning to propositionalise each

bag. In our experiments, we consider two propositionalisation approaches: count-based

and summary-based. Count-based propositionalisation is identical to the propositional-

isation method proposed by Weidmann et al. (2003) and involves simply counting the

number of instances of each bag which fall into each region (see Section 3.3.1). Summary-

based propositionalisation is inspired by the RELAGGS algorithm (Krogel and Wrobel

(2003)) and involves computing summary statistics (such as average, minimum and maxi-

mum) over all attributes for the subset of instances in each region (see Section 3.3.2).

Summary-based propositionalisation is computationally expensive, therefore only rela-

tively small AdaProp trees were practical for our experiments, especially as 10 × 10-fold
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Figure 4.1: Average accuracy (for small trees) by propositionalisation method
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cross-validation was employed. Therefore, in this section (when comparing the two propo-

sitionalisation approaches), we only consider trees which have 7 or fewer nodes.

Figure1 4.1 shows the average accuracy over all parameter settings stated at the start

of this chapter and all tree sizes from 1 to 7. It is clear that summary-based propo-

sitionalisation performs significantly better than count-based propositionalisation. This

is the expected result, as the summary-based propositionalisation preserves much more

information about the instances in each region, i.e. describes the instances in more detail,

than count-based propositionalisation. The results show a similar relationship when the

results are grouped by base learner (Figures A.1 and A.2, in Appendix A) and when

grouped by hyperplane evaluation method (Figures A.3 and A.4, in Appendix A).

In fact, even when larger trees with up to 15 nodes per tree are used for count-based

propositionalisation, the accuracy of summary-based propositionalisation with small trees

remains higher than the accuracy of count-based propositionalisation. This suggests

that summary-based propositionalisation performs uniformly better than count-based

propositionalisation regardless of the choice of base learner or evaluation method, and

should be used if running time is unimportant.

1For each figure, there is a corresponding table (showing the numeric values) in Appendix B.
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Figure 4.2: Average accuracy by candidate generation method
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4.3 Candidate partition generation

At each iteration of AdaProp, a set of candidate partitioning hyperplanes are generated.

We originally considered three methods for generating candidate partitions: mean-based,

median-based and range-based (see Section 3.2.3). However, in practice, the three meth-

ods generated similar candidate hyperplanes, and the experiments indicated that all three

methods perform very similarly for most datasets.

From these three methods, the mean-based one was chosen as the default. This method

is expected to perform better than range-based splitting in datasets which have signif-

icantly skewed distributions of attribute values, as the range-based method ignores the

value of all instances except those at the extremes. Also, the median based approach is

computationally more expensive than both the mean-based method and the range-based

method. Therefore, the mean-based candidate generation technique is the only method

considered in our remaining experiments.

Additionally, we considered a candidate generation technique which differs significantly

from the above methods: the discretization-based method (see Section 3.2.3). In the

discretization-based method, each class boundary is evaluated as a potential location for
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Figure 4.3: Average accuracy (for randomforest) by candidate generation method
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partitioning hyperplanes. Figure 4.2 compares the performance2 of the discretization-

based method against the mean based method. It can be seen that the discretization-

based method performs slightly better than the mean-based method on most datasets.

However, the difference does not appear to warrant the additional computational effort

required.

In contrast, when the results are grouped by base learner (Figures 4.3 and 4.4), a clear

pattern emerges. In the datasets atoms, bonds, chains and musk1, the discretization-

based method performs significantly better than the mean-based method for experiments

using the LogitBoost base learner, while the mean-based performs better than the

discretization-based method in the experiments using the RandomForest base learner.

Similarly, in the datasets musk2, tiger, fox and people, discretization performs signifi-

cantly better for RandomForest, while there is little difference in classification accuracy

when using LogitBoost. This clearly indicates that the choice of candidate generation

method and choice of base learner are interdependent. A consequence of this interdepen-

dence is that any parameter optimisation of AdaProp over base learners and candidate

generation methods must be performed simultaneously.

2For each figure, the corresponding table in Appendix B lists the parameters configurations used in
the figure.
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Figure 4.4: Average accuracy (for logitboost) by candidate generation method
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4.4 Hyperplane evaluation

From a set of candidate hyperplanes, AdaProp aims to find the optimal hyperplane. The

original measure used to evaluate each hyperplane was the classification error metric

(abbreviated CE). The CE metric uses the class predictions made by the base learners

to compute the error on each prediction. In essence, any bag which is misclassified

contributes 1 to the total classification error, while any correctly classified bag contributes

no error.

However, CE ignores the probabilities produced by the base learners, which give a better

indication of how well the base learner has fit to the dataset, and the confidence of each

prediction. In order to make use of these probabilities, we also examined the root mean

squared error (abbreviated RMSE) to evaluate each hyperplane. For each bag, RMSE

computes the error as the square of the difference between the predicted class probabilities

and the actual class value (See Section 3.2.4 for more detail).

Figure 4.5 compares the average classification accuracy over all experiments when us-

ing the CE metric and the RMSE metric. Overall, results indicate that RMSE per-

forms comparably to CE on most datasets, but in the musk2, tiger, fox and elephant
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Figure 4.5: Average accuracy by evaluation method
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datasets, it performs somewhat better. When the results are grouped by base learner

(Figures A.5 and A.6, in Appendix A), a very similar pattern can be seen, although the

difference is more pronounced when using the LogitBoost base learner.

Another evaluation approach, using the Information Gain (abbreviated IG) was also con-

sidered. IG is similar to RMSE since both methods make use of the probabilities emitted

by the base learner. Our experiments (Figure 4.6) indicate that RMSE and IG perform

very similarly as well. In some datasets, e.g. musk2, IG appears to perform slightly better,

however this difference is not significant and the pattern does not remain when the re-

sults are grouped by the base learner. In fact, in almost all individual experiment results,

RMSE and IG obtained very similar classification accuracies.

Therefore, RMSE was chosen as the default metric for evaluating hyperplanes in all

further experiments, as it performs better than CE and comparably to IG.
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Figure 4.6: Average accuracy by evaluation method
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4.5 Leaf node selection

The AdaProp algorithm builds a tree of partitions during the training phase. As discussed

in Section 3.2.2, we considered two search approaches for building this tree: breadth first

search and best first search. When using the breadth first search, nodes are expanded

in order of depth, i.e. the generated tree of partitions will be a complete binary tree.3

In contrast, best first search strategy allows nodes to be expanded in any order, thus

requires searching over a much larger search space than breadth first search.

Figure 4.7 shows the classification accuracy over all experiments, grouped by the leaf node

selection strategy. The results indicate that using best first search does not improve the

classification accuracy significantly in any of the datasets. When the results are grouped

by base learner (Figures A.7 and A.8, in Appendix A), the pattern is very similar, with

breadth first and best first search performing very similarly. This suggests that there is

no benefit to using best first search and therefore we have selected breadth first search

as the default method in AdaProp.

3A binary tree is complete if every level, except the last (i.e. deepest) level, is completely filled.
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Figure 4.7: Accuracy by leaf node selection strategy
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4.6 Base learners

AdaProp is a meta learner, thus requires a base learner in order to perform the adaptive

propositionalisation. Our early, exploratory experiments indicated that among the base

learners in WEKA, LogitBoost (with 50 boosting iterations) and RandomForest (with

100 trees) were consistently the best performers. Therefore, our final experiments only

use these base learners.

Figure 4.8 shows the average accuracy over all experiments grouped by base learner.

The results suggest that each base learner is suited to different datasets, with often very

noticeable differences in performance. However, neither base learner outperforms the

other consistently, i.e. over all datasets.

For example, in the mutagenesis datasets (atoms, bonds, chains) and in musk1, the

RandomForest base learner performs better than the LogitBoost base learner. How-

ever, for the image classification datasets (tiger, fox, elephant, people, bikes, cars)

and musk2, LogitBoost performs better than RandomForest. This pattern holds consis-

tently when the results are broken down by hyperplane evaluation method and leaf node

selection strategy, as shown by Table 4.1.
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Figure 4.8: Average accuracy by base learner
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Table 4.1: The best performing base learner by dataset and parameter configuration

# of wins Winner by configuration

Dataset
RF LB

CE RMSE
BR BE BR BE

atoms 4 0 RF RF RF RF
bonds 4 0 RF RF RF RF

chains 4 0 RF RF RF RF
musk1 2 2 RF LB LB RF
musk2 0 4 LB LB LB LB

trx 3 1 RF RF RF LB
tiger 0 4 LB LB LB LB

fox 0 4 LB LB LB LB
elephant 0 4 LB LB LB LB

people 0 4 LB LB LB LB
bikes 0 4 LB LB LB LB
cars 0 4 LB LB LB LB

Key:

RF: RandomForest CE: Classification error BR: Breadth first search
LB: LogitBoost RMSE: Root mean squared error BE: Best first search
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Chapter 5

Results: Refinements

Given the results of the previous chapter (Chapter 4), we hypothesized that AdaProp is

overfitting noticeably to some datasets. In order to reduce the extent of overfitting, and

therefore improve the classification accuracy, two standard refinement techniques were

examined: parameter selection of the maximum tree size, and bagging with and without

randomization.

The refinement techniques, in theory, can be applied independently of the choice of

the other AdaProp parameters, such as the propositionalisation method. However, the

experiments presented in Section 4.2 indicate that summary-based propositionalisation

performs significantly better than count-based propositionalisation, which suggests that

overfitting is more prevalent when using count-based propositionalisation. In fact, early

exploratory experiments with bagging and parameter selection showed that summary-

based propositionalisation obtained very little increase in accuracy when the refinements

were applied.

Therefore, we restrict our investigation of overfitting and the impact of the refinements

to count-based propositionalisation only. Thus, all experiments, charts and discussions in

this chapter consider only the results derived via count-based propositionalisation.

5.1 Parameter selection

A parameter of the AdaProp algorithm is the size of the tree of partitioning hyperplanes.

Early experiments indicated that this parameter had some impact on the performance

of the algorithm, where, in general, the cross-validated accuracy increased as the tree

size increased, up to some optimum tree size, after which the accuracy decreased. The
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Figure 5.1: Average accuracy - Impact of parameter selection
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early experiments also indicated that this optimum size is heavily dependent on the

dataset being learned. In order to determine an appropriate size automatically for any

given dataset, 5-fold cross-validated parameter selection was implemented, as discussed

in Section 3.5.1.

Figure 5.1 shows cross-validated accuracy averaged over all count-based experiments when

using parameter selection to determine the tree size. This figure also compares the pa-

rameter selected accuracy to the accuracy obtained when the tree size is set to 7 across

all datasets, which was the best constant limit: when AdaProp was run with a constant

maximum tree size parameter across all datasets, the experiments where the tree size

parameter was set to 7 obtained the best average accuracy.

Figure 5.1 clearly indicates that parameter selection does not produce lower classification

accuracies than applying a constant tree size. In fact, in datasets such as atoms, bonds,

tiger and elephant, parameter selection obtains a noticeable improvement in classifi-

cation accuracy. The parameter selection process chose very small trees in the cases of

atoms and bonds (sizes 3 and 5 respectively), while choosing larger trees for the tiger

and elephant datasets. In the remaining datasets, the chosen tree size was close to 7,

therefore suggesting that for these datasets, a tree size of 7 is near optimal.
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Figure 5.2: Average accuracy - Impact of bagging
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5.2 Randomized bagging

A standard solution to reduce the amount of overfitting is to perform bagging, as dis-

cussed in Section 3.5.2, where n new datasets are generated by sampling with replace-

ment from the original dataset and n AdaProp trees are generated independently, one for

each dataset. The final model combines the predictions of the n models by averaging

class probability estimates. In the experiments, we performed bagging with 50 iterations

(i.e. n = 50), with RMSE evaluation, mean-based hyperplane generation, count-based

propositionalisation, breadth-first search, both base learners, and with no parameter se-

lection.

Figure 5.2 shows the impact of bagging on the classification accuracy. It is clear that

bagging improves performance significantly across all datasets, with the largest improve-

ment (of 9%) occurring in tiger and the smallest improvement (of 3%) occurring in

fox. In fact, the average improvement with bagging over all datasets is 5.8%. This

strongly suggests that count-based AdaProp, without bagging, overfits every dataset: its

classifications depend too much on the particular training set used.
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When performing bagging, the runtime is linear with respect to the number of iterations,

therefore the 50-iteration bagged AdaProp experiments require 50 times longer to run than

the single AdaProp tree experiments. Due to this runtime cost, it was not practical to

run standard bagging over larger trees, and therefore the standard bagging experiments

were limited to a maximum tree size of 15. In order to allow experiments on larger

trees to be conducted, and also in order to reduce overfitting further, randomization of

attribute selection was implemented, where only a subset of attributes was considered

when generating candidate hyperplanes (see discussion in Section 3.5.2).

First, we examine the impact of randomization on the bagging process, while keeping

the size of the trees constant, limited to a maximum tree size of 15, and the number of

trees at 50. Since the same number of equally sized trees are used and randomization

reduces the amount of information used to make each decision, the classifier will fit the

dataset less closely. Figure 5.3 compares the average cross validated accuracy for standard

bagging and randomized bagging. Decreases in cross-validated accuracy can be seen for

almost all datasets, especially in the image classification datasets such as tiger and

elephant, where a significant decrease in accuracy is evident. Therefore, it appears that

randomized bagging underfits most datasets. However, somewhat surprisingly, atoms and

musk1 show slight improvements when using randomization, which suggests that perhaps

even AdaProp with standard bagging overfits these datasets.

The main advantage of randomization is that it allows much larger trees to be used in the

bagging experiments. With randomized bagging, experiments involving AdaProp trees of

size up to 30 became practical. In order to compare standard bagging (performed only

over small trees) against randomized bagging (performed over larger trees), we plot the

maximum (instead of the average) accuracy achieved for each dataset across all parameter

settings. This maximum accuracy can be used as an indicator of the best case performance

of each method.

Figure 5.4 compares the maximum1 accuracy with and without randomization. For the

image classification datasets, the performance of randomized bagging still lags behind

that of standard bagging and the difference is significant in tiger, elephant, and bikes,

despite the larger trees used by randomized bagging. However, for the chemical datasets,

randomized bagging performs at least as well as standard bagging and shows clear im-

provement in atoms and musk1. This shows that randomization is able to improve classi-

fication accuracy of bagged AdaProp for some datasets, but can also result in significant

decreases in accuracy over other datasets.

1Average accuracy is less meaningful in this case as the set of experiments differs for each series.
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Figure 5.3: Average bagged accuracy - Impact of randomization (for small trees)
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Figure 5.4: Maximum bagged accuracy - Impact of randomization
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Chapter 6

Results: Comparisons

The experiments conducted in Chapters 4 and 5 were limited to the AdaProp algorithm, as

they were aimed at comparing the various choices for each parameter of AdaProp and the

impact of each choice on the classification accuracy. However, many other multi-instance

machine learning algorithms have been proposed in the literature (see Section 2.4). There-

fore, in this chapter, we compare the classification accuracy achieved by AdaProp against

that of other multi-instance algorithms implemented in WEKA. Among these algorithms,

AdaProp is closely related to TLC (Weidmann et al., 2003) and RELAGGS (Krogel &

Wrobel, 2003), therefore we compare it against these two algorithms in more detail.

6.1 Count-based AdaProp vs. TLC

TLC, which was discussed in Section 2.4.1, is an algorithm introduced by Weidmann

et al. (2003) which uses a two level learning approach to handling multi-instance data.

The aim of the two level approach is to separate the inference of the instance labels

from the learning of the bag labels. TLC builds up a tree of partitions at the first level,

which is then used to propositionalise each bag at the second level. The count-based

propositionalisation approach of AdaProp is identical to TLC’s second level, therefore

count-based AdaProp and TLC only differ at the first level, i.e. how the tree of partitions

is built up. Therefore, comparing TLC to count-based AdaProp is equivalent to comparing

the tree generation method of TLC against that of AdaProp.

In the experiments, TLC was run with the same base learners as that of AdaProp, i.e.

RandomForest with 100 trees and LogitBoost with 50 iterations. Figure 6.1 shows the

best cross-validated accuracy that TLC was able to achieve in each dataset, plotted
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Figure 6.1: Maximum accuracy - TLC vs count-based AdaProp
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against that of the best count-based AdaProp configuration (i.e. without bagging). TLC

outperforms AdaProp in all datasets, and by a large margin in musk1, musk2 and the

last four image classification datasets (elephant to cars). These results clearly indicate

that TLC’s tree building approach results in better classification accuracies than that of

count-based AdaProp.

Experiments in Chapters 4 and 5 indicated that count-based AdaProp significantly over-

fits some datasets. In order to determine whether this overfitting was responsible for the

poor performance of count-based AdaProp, experiments were conducted for TLC with 50

iterations of bagging. Figure 6.2 compares the maximum accuracy obtained by bagged

TLC against the maximum accuracy of bagged count-based AdaProp (also with 50 it-

erations). The figure shows that bagged TLC and bagged AdaProp perform similarly

across the mutagensis datasets (atoms, bonds, chains) and trx, while bagged AdaProp

performs noticeably better in tiger. However, even with bagging applied, TLC performs

better than count-based AdaProp in musk1, musk2 and the last four image classification

datasets, but the difference in classification accuracy is somewhat smaller than that in

Figure 6.1. This shows that overfitting is more prevalent in AdaProp than in TLC, but

even with bagging applied, TLC outperforms count-based AdaProp.
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Figure 6.2: Maximum bagged accuracy - TLC vs count-based AdaProp
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Further investigation of the experiment results showed that TLC produces much larger

partitioning trees than AdaProp. All count-based AdaProp trees, across all datasets, were

limited to 30 nodes (by design). However, Table 6.1 shows that the trees produced

by TLC are significantly larger, especially in trx and the GRAZ02 datasets (people,

bikes and cars). This suggests that more experiments involving larger AdaProp trees

should be conducted in the future, to determine if significantly increasing the tree size can

contribute towards increasing the cross-validated accuracy. However, such very large trees

are impractical as AdaProp is computationally much more expensive than TLC.

Table 6.1: Size of trees built by TLC (when run on entire dataset)

Dataset TLC tree size (# nodes) Dataset TLC tree size (# nodes)

atoms 71 tiger 161
bonds 247 fox 153

chains 317 elephant 195
musk1 37 people 711
musk2 205 bikes 769

trx 1315 cars 861
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Figure 6.3: Maximum accuracy - RELAGGS vs summary-based AdaProp
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6.2 Summary-based AdaProp vs. RELAGGS

RELAGGS is an algorithm introduced by Krogel and Wrobel (2003) which proposition-

alises each bag by computing the summary statistics for each attribute over all instances

in the bag. Summary-based AdaProp performs the same propositionalisation, albeit af-

ter grouping the instances of each bag by a tree of partitions. Therefore, summary-

based AdaProp can be considered to be a generalisation of RELAGGS, as summary-based

AdaProp with a one-node tree produces exactly the same result as RELAGGS.

Similar to the comparison against TLC, RELAGGS was run using both base learners,

RandomForest and LogitBoost. Figure 6.3 compares the best cross-validated accuracy

achieved on each dataset by RELAGGS and summary-based AdaProp. Summary-based

AdaProp performs at least as well as RELAGGS in all datasets, while producing noticeable

improvements in performance in the atoms, bonds, trx and tiger datasets. This shows

that the generalisation performed by summary-based AdaProp, i.e. dividing the instance

space by its tree of partitions before performing the propositionalisation, is worthy of

consideration, that is, can produce an improvement in the classification accuracy over

RELAGGS.
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Figure 6.4: Comparing AdaProp against the other MI algorithms
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6.3 AdaProp vs. existing MI algorithms

As noted in Section 2.4, there are many well known multi-instance machine learning

algorithms in the literature. Previous work (Foulds & Frank, 2008) compared various ex-

isting multi-instance algorithms implemented in WEKA and determined the maximum

cross-validated accuracy obtained for each dataset. Figure 6.4 plots this maximum clas-

sification accuracy, updated by our experiments with TLC and RELAGGS. The figure

also shows the best cross-validated accuracy that AdaProp was able to achieve across

all experiments in this project. The results indicate that AdaProp achieves slight im-

provements in performance over the other algorithms in the atoms, bonds, and tiger

datasets, while performing noticeably worse in musk1 and musk2. Across the image clas-

sification datasets, there is very little difference between AdaProp and the best of the

other multi-instance algorithms.

Therefore, from the results in this chapter, it can be concluded that count-based AdaProp

performs worse than TLC, perhaps as the result of the constraint on the size of the tree,

while summary-based AdaProp improves on the results of RELAGGS. In general, the

best of AdaProp seems to perform comparably to the best of the other multi-instance

algorithms.
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Chapter 7

Conclusion

In this project, we propose AdaProp, an algorithm which propositionalises multi-instance

data using an approach which is influenced by the base learner. AdaProp divides up the

instance space by building up a tree of partitioning hyperplanes, where each node of the

tree is selected by consulting the base learner. More specifically, at each node of the tree,

a set of candidate partitioning hyperplanes is generated, from which a single hyperplane

is chosen, by evaluating each hyperplane via the base learner. The resultant tree of

partitioning hyperplanes is then used to propositionalise each bag, by either counting the

number of instances of or computing the summary statistics of, the subset of instances

which fall into each region.

Our experiments show that the mean-based method is the best method for candidate

partition generation and RMSE evaluation is the best hyperplane evaluation method,

while the two leaf node selection methods perform similarly. The experiments also show

that summary-based propositionalisation performs significantly better than count-based

propositionalisation, albeit at the cost of noticeably increased running time, and that the

relative ordering of the base learners, in terms of the classification accuracy, is highly

dependent on the dataset.

Bagging of count-based AdaProp trees results in significant increases in accuracy over all

datasets, while the randomization in attributes produces further increases in performance

over some datasets. Count-based AdaProp performs poorly when compared to TLC,

while summary-based AdaProp improves on the results of RELAGGS. Overall, the best

results achieved by AdaProp are comparable to the best results achieved by the other

existing multi-instance machine learning algorithms, especially for the image classification

datasets considered in this study.
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Result charts

47



Figure A.1: Average accuracy (for RandomForest) by propositionalisation method
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Figure A.2: Average accuracy (for LogitBoost) by propositionalisation method
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Figure A.3: Average accuracy (for CE) by propositionalisation method
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Figure A.4: Average accuracy (for RMSE) by propositionalisation method
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Figure A.5: Accuracy (for RandomForest) by evaluation method
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Figure A.6: Accuracy (for LogitBoost) by evaluation method
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Figure A.7: Accuracy (with RandomForest) by leaf node selection strategy
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Figure A.8: Accuracy (with LogitBoost) by leaf node selection strategy
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Figure A.9: Accuracy (with LogitBoost) - parameter selection
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Figure A.10: Accuracy (with RandomForest) - parameter selection
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Appendix B

Result tables
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Table B.1: Data table for Figure 4.1: Average accuracy (for small trees) by proposition-
alisation method
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i
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l
e

b
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k
e
s

c
a
r
s

Count-based 74.0 81.7 83.3 71.7 69.6 84.2 70.9 60.4 70.0 73.7 73.3 66.7
Summary-based 84.2 87.6 87.0 80.8 78.5 87.7 81.5 62.4 79.6 79.4 80.8 74.0

The results were averaged over each combination of the following parameter settings:
Candidate Generation: mean, median or range
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search
Base Learner: RandomForest or LogitBoost

Table B.2: Data table for Figures 4.2, 4.3, and 4.4: Average accuracy by candidate
generation method
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Mean-based (avg) 73.0 80.3 81.4 71.7 70.0 83.9 69.8 61.1 70.6 73.7 72.9 67.3
Discretized (avg) 74.8 80.9 83.5 70.8 71.2 84.1 71.7 58.7 70.0 74.2 74.7 70.0
Mean-based (RF) 76.0 82.3 80.7 75.6 64.0 81.6 64.8 55.6 67.4 72.6 72.2 67.8
Discretized (RF) 73.4 81.3 79.4 66.2 67.7 82.7 69.3 61.4 66.3 73.9 73.4 69.6
Mean-based (LB) 71.5 79.3 81.8 69.8 72.9 85.0 72.3 63.8 72.2 74.3 73.3 67.1
Discretized (LB) 75.6 80.8 85.6 73.1 72.9 84.8 72.9 57.3 71.9 74.3 75.4 70.2

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search

Table B.3: Data table for Figures 4.5 and 4.6: Average accuracy by evaluation method
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b
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s

c
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s

CE 76.3 82.6 83.2 71.8 68.8 84.5 71.1 59.1 70.6 73.7 73.5 66.6
RMSE 75.3 82.8 83.6 71.7 70.6 84.7 72.9 60.9 71.6 74.1 73.7 67.1
IG 75.3 82.9 83.3 71.9 71.3 84.8 72.8 61.0 71.2 73.8 73.1 67.2

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Leaf Node Selection: breadth first search or best first search
Base Learner: RandomForest or LogitBoost
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Table B.4: Data table for Figure 4.7: Accuracy by leaf node selection strategy
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e
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c
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r
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Breadth first search 74.3 82.2 84.5 71.3 71.1 84.7 74.7 62.6 71.1 73.7 73.6 66.3
Best first search 73.3 82.8 84.7 72.3 70.6 84.7 72.7 61.9 70.4 74.2 73.8 66.7

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: CE, RMSE or IG
Base Learner: RandomForest or LogitBoost

Table B.5: Data table for Figure 4.8: Average accuracy by base learner
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c
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LogitBoost 73.1 80.8 83.0 70.6 72.0 84.8 73.6 62.5 72.5 74.9 74.5 67.6
RandomForest 78.5 84.6 83.8 72.8 67.4 84.3 70.5 57.6 69.6 72.9 72.8 66.2

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search

Table B.6: Data table for Figure 5.1: Average accuracy - Impact of parameter selection
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b
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c
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s

Tree Size = 7 74.0 82.5 84.6 71.8 70.3 84.5 73.2 60.5 70.5 74.0 74.0 66.5
Parameter Selected 79.3 85.5 84.9 72.0 70.7 85.6 76.6 60.2 73.6 74.5 74.8 66.9

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search
Base Learner: RandomForest or LogitBoost
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Table B.7: Data table for Figure 5.2: Average accuracy - Impact of bagging
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Without Bagging 74.0 82.5 84.6 71.8 70.3 84.5 73.2 60.5 70.5 74.0 74.0 66.5
With Bagging 81.9 87.9 88.2 78.4 78.8 87.6 82.5 63.3 79.0 78.4 78.5 71.8

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: RMSE only
Leaf Node Selection: breadth first search only
Base Learner: RandomForest or LogitBoost

Table B.8: Data table for Figure 5.3: Average bagged accuracy - Impact of randomization
(for small trees)
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Without Randomization 81.9 87.9 88.2 78.4 78.8 87.6 82.5 63.3 79.0 78.4 78.5 71.8
With Randomization 83.4 87.6 87.9 80.3 76.1 87.4 75.8 61.5 69.8 76.5 73.1 68.7

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: RMSE only
Leaf Node Selection: breadth first search only
Base Learner: RandomForest or LogitBoost

Table B.9: Data table for Figure 5.4: Maximum bagged accuracy - Impact of random-
ization
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Without Randomization 83.4 89.4 88.7 79.7 79.2 88.5 84.2 65.4 80.6 79.1 79.4 72.5
With Randomization 87.9 89.4 89.9 82.3 79.3 88.4 79.1 63.7 74.1 78.3 74.7 70.8

The maximum result was selected over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: RMSE only
Leaf Node Selection: breadth first search only
Base Learner: RandomForest or LogitBoost
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Table B.10: Data table for Figure 6.1: Maximum accuracy - TLC vs count-based AdaProp
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TLC 86.8 88.0 89.4 87.6 81.4 87.6 81.6 67.0 86.6 82.4 82.0 76.6
AdaProp 84.5 87.5 86.6 76.3 74.5 86.6 79.6 66.0 75.9 76.3 77.2 68.8

The maximum result was selected over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search
Base Learner: RandomForest or LogitBoost

Table B.11: Data table for Figure 6.2: Maximum bagged accuracy - TLC vs count-based
AdaProp
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TLC 86.8 88.7 89.5 88.1 81.4 88.9 81.6 67.0 86.9 82.4 83.0 76.6
AdaProp 87.9 89.4 89.9 82.3 79.3 88.5 84.2 65.4 80.6 79.1 79.4 72.5

The maximum result was selected over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: RMSE only
Leaf Node Selection: breadth first search only
Base Learner: RandomForest or LogitBoost
TLC: Default settings with RandomForest or LogitBoost

Table B.12: Data table for Figure 6.3: Maximum accuracy - RELAGGS vs summary-
based AdaProp
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RELAGGS 80.2 88.0 88.6 85.6 80.9 87.1 80.8 65.8 85.5 81.5 82.7 77.2
AdaProp 85.1 89.9 89.5 85.4 82.0 89.2 82.6 66.9 85.5 82.1 83.1 77.2

The maximum result was selected over each combination of the following parameter settings:
Propositionalisation: summary-based only
Candidate Generation: mean, median or range
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search
Base Learner: RandomForest or LogitBoost
RELAGGS: Default settings with RandomForest or LogitBoost
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Table B.13: Data table for Figure 6.4: Comparing AdaProp against the other MI algo-
rithms
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Others 86.8 88.7 89.5 89.1 91.6 90.3 84.3 67.0 87.1 82.6 84.3 77.2
AdaProp 87.9 89.9 89.9 85.4 82.0 89.2 84.2 66.9 85.5 82.1 83.1 77.2

The results were maximised over all experiments conducted in this report and combined with the
results from Foulds and Frank (2008). The respective algorithms are shown in Table B.14.

Table B.14: Configurations list for Table B.13 (and Figure 6.4)

Dataset Others AdaProp

atoms Bagged TLC Bagged count-based
bonds Bagged TLC Summary-based
chains Bagged TLC Bagged count-based
musk1 MILES with SMO (RBF) Summary-based
musk2 MILES with 1-Norm SVM Summary-based
trx AdaBoost with Opt.Ball Summary-based

tiger MIWrapper over RandomForest Bagged count-based
fox SimpleMI over AdaBoost with DecisionStump Summary-based

elephant MIWrapper over RandomForest Summary-based
people MIWrapper over RandomForest Summary-based
bikes SimpleMI over 1-Norm SVM Summary-based
cars RELAGGS Summary-based

Table B.15: Data table for Figures A.1, and A.2: Average accuracy by propositionalisa-
tion method and base learner
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Count, RF 76.1 83.5 83.7 72.8 67.3 83.8 69.0 57.5 68.2 72.8 72.7 66.2
Summary, RF 84.3 89.0 88.8 84.1 80.6 88.5 81.5 64.7 80.9 81.6 82.6 76.4
Count, LB 71.9 79.8 82.8 70.7 71.9 84.6 72.8 63.3 71.9 74.6 74.0 67.3
Summary, LB 84.0 86.2 85.1 77.5 76.5 86.8 81.5 60.0 78.4 77.2 79.0 71.7

The results were averaged over each combination of the following parameter settings:
Candidate Generation: mean, median or range
Hyperplane Evaluation: CE, RMSE or IG
Leaf Node Selection: breadth first search or best first search
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Table B.16: Data table for Figures A.3, and A.4: Average accuracy by propositionalisa-
tion method and evaluation method
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Count, CE 74.7 81.7 83.1 71.8 68.5 84.1 70.1 59.1 69.7 73.5 73.3 66.5
Summary, CE 83.8 87.9 87.4 80.7 79.9 87.7 81.5 61.9 80.7 79.8 80.7 74.1
Count, RMSE 73.4 81.6 83.4 71.6 70.6 84.4 71.7 61.7 70.4 73.9 73.4 66.9
Summary, RMSE 84.5 87.3 86.5 81.0 77.1 87.6 81.4 62.8 78.6 79.0 80.9 73.9

The results were averaged over each combination of the following parameter settings:
Candidate Generation: mean, median or range
Leaf Node Selection: breadth first search or best first search
Base Learner: RandomForest or LogitBoost

Table B.17: Data table for Figures A.5, and A.6: Average accuracy by base learner and
evaluation method

a
t
o
m
s

b
o
n
d
s

c
h
a
i
n
s

m
u
s
k
1

m
u
s
k
2

t
r
x

t
i
g
e
r

f
o
x

e
l
e
p
h

p
e
o
p
l
e

b
i
k
e
s

c
a
r
s

RF, CE 78.9 84.5 83.3 72.7 66.8 84.5 70.0 56.8 69.5 72.6 72.9 65.8
RF, RMSE 78.1 84.6 84.3 73.0 68.0 84.2 71.0 58.4 69.7 73.1 72.7 66.5
LB, CE 73.7 80.7 83.0 71.0 70.8 84.5 72.3 61.4 71.7 74.8 74.2 67.4
LB, RMSE 72.4 80.9 82.9 70.3 73.3 85.2 74.8 63.5 73.4 75.0 74.7 67.7

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Leaf Node Selection: breadth first search or best first search
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Table B.18: Data table for Figures A.7, and A.8: Average accuracy by base learner and
leaf node selection strategy
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RF, Breadth 77.2 83.8 85.7 70.7 69.6 84.7 73.8 60.1 69.5 72.6 72.5 65.4
RF, Best 75.2 84.6 85.3 71.3 69.9 84.8 70.0 59.6 68.7 73.3 72.5 65.5
LB, Breadth 71.4 80.6 83.3 71.9 72.6 84.6 75.6 65.0 72.8 74.7 74.7 67.1
LB, Best 71.5 81.0 84.1 73.2 71.3 84.7 75.4 64.3 72.1 75.1 75.0 67.9

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: CE, RMSE or IG

Table B.19: Data table for Figures A.9, and A.10: Average accuracy by base learner and
parameter selection
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RF, Without 76.2 84.2 85.3 71.2 69.2 84.8 71.2 58.9 68.9 72.9 73.0 65.5
RF, With 83.3 87.2 85.6 71.4 69.5 86.3 75.8 59.2 73.2 73.2 73.2 65.5
LB, Without 71.9 80.8 83.8 72.5 71.4 84.2 75.1 62.0 72.1 75.0 75.0 67.5
LB, With 75.3 83.8 84.3 72.5 71.9 84.8 77.5 61.3 74.0 75.8 76.5 68.3

The results were averaged over each combination of the following parameter settings:
Propositionalisation: count-based only
Candidate Generation: mean only
Hyperplane Evaluation: CE, RMSE or IG
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